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A nonequilibrium Ward identity �NE WI� connecting the scalar transport vertex correction with one-particle
self-energy is derived using the global U�1� symmetry of the fermion nonequilibrium Green’s functions �NGF�.
The nonperturbative derivation does not depend on the details of the many-body system. A renormalized
multiplicative composition rule for the NGF, reflecting time coherence, is obtained and related to the NE WI.
Applications involve �i� testing the consistency of approximations shown in the example of a self-consistent
Born approximation for disorder scattering, and �ii� in the general quantum transport theory, the formalism
permits one to assess routes to generalized master equations, in particular those based on the generalized
Kadanoff-Baym ansatz.
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The Ward identity �WI�, discovered by Ward1 for QED,
and its many generalizations have played a crucial role in
quantum field theory and in the theory of condensed
matter.1–13 In all quantum field theories, WIs are essential for
the renormalization program: they lower the number of inde-
pendent renormalization constants, serve in proofs of renor-
malizability, and provide control over the divergent terms in
perturbation schemes. Takahashi showed2 that WIs are at the
root of any field theory, since they are related to symmetries
and conservation laws, corresponding to the gauge invari-
ance. WIs, especially for finite energy and momentum trans-
fers, are often called Ward-Takahashi identities.

Ward identities have also been extremely useful in con-
densed matter physics, first as a tool in the field-theoretic
approach to developing phenomenological description of
condensed matter systems based on an effective single-
particle picture. In particular, they have played an important
role in the Fermi liquid theory4,11 since they have ensured
consistency of the single-particle description with many-
particle correlations. WIs have been employed in connection
with conserving approximations for real-time and Matsubara
Green’s functions7,6,9 for a broad variety of condensed
matter systems such as metals,4,11 superconductors, 13 and
disordered systems5,13 or systems with electron-phonon
interactions.3

The virtue of WIs, employed in all of the above applica-
tions, is to express, under special conditions, a higher-order
quantity, like an interaction vertex, in terms of a lower-order
quantity, in this case of the single-particle self-energy.

This property has made WIs a constitutive part of the
consistent quantum transport theory ever since the pilot work
of Langer.14 In the description of linear transport, the empha-
sis naturally shifts from the single-particle spectral properties
to the two-particle Green’s functions, yielding the linear re-
sponse functions. This calls for a consistent perturbation
scheme for both, and a check of this consistency is provided
by equilibrium Ward identities for the so-called transport ver-
tex corrections.8 These quantities are equivalent with the true
linear response functions.5,11,13 Ward identities in this case

serve to express the response to special disturbances in terms
of the single-particle characteristics.

While the use of WIs for equilibrium spectral properties
and for the linear transport has been extensive, a generaliza-
tion suitable for nonequilibrium systems has not been pro-
posed so far. It is our aim to make a step in this direction and
to show its usefulness.

In this paper we consider consequences of the global U�1�
symmetry for the properties of the electronic nonequilibrium
Green’s function15–19 �NGF� admitting an arbitrarily large
deviation from equilibrium. In a near-equilibrium case, this
symmetry is known2,6,9,10 to lead to a Ward identity con-
nected with particle number conservation and expressing the
transport vertex for linear response to a shift in the energy
zero �or, equivalently, of the chemical potential� in terms of
the equilibrium self-energy. We derive an extension of this
WI to all nonequilibrium processes of the broad switch-on
class specified by the Keldysh initial condition: they start at
a switch-on instant from equilibrium, which has been formed
at an infinitely remote initial time.15–19

We further derive from the nonequilibrium Ward identity
the renormalized semigroup composition rule for nonequilib-
rium Green’s functions �NE RSGR� accounting for memory
and coherence past and future in the system. It is shown that
this necessary condition for the WI can also be deduced from
the Dyson equation alone, without invoking the gauge invari-
ance explicitly.

Finally, the use of the NE WI is examined in two impor-
tant cases. �i� The self-consistent Born approximation
�SCBA� for disorder scattering5,12,20 is used as an example
how a standard application of the WI for testing consistency
of physical approximations can be extended to nonequilib-
rium processes. �ii� The NE WI promises to be instrumental
in the modern approach to quantum transport equations be-
yond the Boltzmann limit.17–19 In particular, we establish its
close relationship with the well-known generalized
Kadanoff-Baym ansatz �GKBA�. Exact companions of the
GKBA, the reconstruction equations for the NGF, are iden-
tified as a limiting case of the NE RSGR. We then use the
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full NE RSGR to assess the GKBA from a still unexplored
angle.

The global gauge symmetry is universal and does not de-
pend on the specific many-body Hamiltonian H�t� �admit-
ting any geometry, dimensionality and external fields, inter-
actions with other quantized fields and/or direct interactions
between the Fermions, any spin structure, and a continuous
and discrete configuration space�. The only natural require-
ment is that the Hamiltonian conserve the total Fermion
number N:

�H�t�,N�− = 0. �1�

The formal means to make full use of this generality are
simple. The fermions are described by their nonequilibrium
Green’s function possessing an exact or approximate self-
energy. Equations for these quantities are kept in an invariant
representationless form.

We work with the real-time matrix NGF and self-energy,18

rather than with the equivalent causal quantities on the
Schwinger-Keldysh loop:

G = �GR G�

0 GA �, � = ��R ��

0 �A � . �2�

They satisfy the Dyson equation

G = G0 + G0�G , �3�

The self-energy matrix is, in the self-consistent theory, ex-
pressed as a functional, exact or approximate, of the Green’s
function. All quantities are double-time operator functions.21

The Dyson equation has a simple structure free of the corre-
lated initial condition terms,17,18 because we restrict our
study to the switch-on processes governed by the Keldysh
initial condition by definition.

For an arbitrary external time-local disturbance U�t�, the
field dependent GF and self-energy satisfy

GU = G0U + G0U�UGU,

G0U
−1 = G0

−1 − U, U�t,t�� = ��t − t���U�t� 0

0 U�t�
� . �4�

The vertex corrections appear, in an integral form, as �U� in
the linear response of the one-electron GF to a small varia-
tion �U of the external field. By Eq. �4�,

�UG = G�U�− G−1�G = G��U + �U��G . �5�

The gauge invariance of the first kind �in other words, the
global U�1� symmetry� is invoked as follows: a time variable
shift U�t� is added to the one-particle energy in the free GF.
This is obtained by a particular external disturbance,

G0U
−1 = G0

−1 − U�t���t − t��1,1 � � I 0

0 I
� , �6�

with the spatially homogeneous potential energy U�t� being
an arbitrary real function of time, but not of canonical vari-
ables, and I the operator unity.

The field dependence of the Dyson equation is then ex-
pressed by explicit relations

XU�t,t�� = X�t,t��exp�− i�
t�

t

d� U���	 , �7�

where X=G ,G0 ,�. For G and G0, Eq. �7� follows from
definition and fermion number conservation �1�. The self-
energy � must transform according to Eq. �7� to keep the
Dyson equation �gauge� invariant. This nontrivial require-
ment leads to the Ward identity.

From the gauge transformation �7�, the vertex correction
�U� follows as

�U��t,t�� = ��t,t���− i�
t�

t

d� �U���	 . �8�

We define an operator vertex correction having three time
terminals. By Eq. �8�, it has the explicit form

��t,t�;t�� �
�

�U�t��
��t,t�� = − i��t,t����t,t�;t�� ,

��t,t�;t�� = ��t − t����t� − t�� − ��t� − t����t� − t� .

�9�

This is our central result, and we will call it for obvious
reasons the nonequilibrium Ward identity. It was obtained, as
expected, in a nonperturbative fashion by executing the func-
tional derivative of the Dyson equation with respect to U and
letting U→0.

We first compare Eq. �9� with the Ward identities in equi-
librium. � then depends only on two time differences—say,
�= t− t� and ��= t�− t�—and its Fourier transform has the
well known form5,11,13

�̃�	,	�� =� � d� d�����,��;0�ei�	�−	����

= −
��	� − ��	��

	 − 	�
. �10�

The interpretation of the 	 ,	� arguments depends on the
matrix element. In the 
R,A elements, �R,A�	�=��	± i0�
correspond to the one-particle renormalization; in the trans-
port component 
�, the fluctuation-dissipation theorem
yields ���	�= ���	+ i0�−��	− i0��fFD�	�, so that the ver-
tex correction connects both rims of the cut. The original

Ward identity �̃�	 ,	�=−���	� /�	 concerns the limit
	�→	 of Eq. �10�. Our WI corresponding to a finite energy
transfer could well be termed the Ward-Takahashi identity.

The more common form of the Ward identity in the
coordinate representation involves a local external field
U�1,2�=U�1���1−2� , 1�
r1 , t1� and the three-point vertex
correction � introduced as6

��1,1�;2� �
�

�U�2�
��1,1�;U� . �11�

For U�1�=U�t1�, the gauge field of Eq. �6� is recovered and
the Ward identity of Eq. �9� assumes the form of a sum rule
for the vertex correction �,
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��1,1�;t�� =
�

�U�t��
��1,1��

=� dr̄ ��1,1�; r̄t��

= − i��1,1����t,t�;t�� . �12�

Integration over the splitting time t� yields

� dt���1,1�;t�� =� d3̄ ��1,1�; 3̄� = − i�t − t����1,1�� .

�13�

This equation extends the WI for inhomogenoeus systems6

�Eq. �7.22�� to nonequilibrium.
To explore the meaning and usefulness of the nonequilib-

rium WI, we will consider �9� for two widely known and
rather transparent approximations of the NGF, SCBA, and
GKBA, extended beyond equilibrium.

First, we consider the SCBA for disorder scattering on a
weak static random potential D.5,12,20 This single-particle
problem is turned to a field-theoretic one by configuration
averaging �· · · 
c over the ensemble of D fields. The SCBA
self-energy for �,

� = �DGD
c, �D
c = 0, D = �D 0

0 D
� , �14�

is an ultimately a simple functional of G. From this, we get
the Bethe-Salpeter equation for the vertex correction �11� if
we differentiate �14� at U�2� ,2�
r� , t��, use Eq. �5�, and
define ��0��1,1� ;2�=��1−2���1�−2�1:

��1,1�;2� =� � d3 d4�DG�1,3�
��0��3,4;2�

+ ��3,4;2��G�4,1��D
c. �15�

Integrating over r�, we get an integral equation for the con-
tracted vertex ��1,1� ; t��. We verify, in analogy to the equi-
librium consistency check,5 that this equation is satisfied by
the WI expression �12� for �. This procedure leads to the
following condition:

G�t,t����t,t�;t�� = iG�t,t��G�t�,t����t,t�;t��

+� � dt̄ dt̄̄ G�t, t̄���t̄, t̄̄���t̄, t̄̄;t��G�t̄̄,t�� .

�16�

We shall give two different proofs of �16� shortly, but first it
should be noted that �i� this relation has a general character,
disassociated from any specific approximation, and �ii� it
provides a sufficient condition for the WI to hold in a given
physical situation, when combined with a self-consistent ap-
proximation for �—as shown here on the archetypal ex-
ample of SCBA.

Equation �16� is, next to Eq. �9�, the second basic result of
this paper. It is a purely single-particle equation for G and �.
It is easily derived from Eq. �9� �introduce �8�⇔�9� and the
analog of �8� for G into the identity �5��. Hence, it serves as

a necessary condition for the WI. On the other hand, Eq. �16�
combined with a self-consistent approximation implies the
WI as a relation between the simpler single-particle � and
the two-particle transport vertex �. It is then very important
that Eq. �16�, unlike the Ward identity proper, can also be
derived without invoking the gauge symmetry. Only the re-
lated Dyson equation is needed, with any reasonable ap-
proximation for the self-energy. To outline this second deri-
vation, we first write Eq. �16� by components.

A nonzero result is obtained only for two arrangements of
times. First, for t� t�� t�, two equations are obtained from
Eq. �16�, one for the retarded propagator, the other for the
particle correlation function:

GR�t,t�� = iGR�t,t��GR�t�,t��

+ �
t�

t

dt̄�
t�

t�

dt̄̄ GR�t, t̄��R�t̄, t̄̄�GR�t̄̄,t�� , �17�

G��t,t�� = iGR�t,t��G��t�,t��

+ �
t�

t

dt̄�
−�

t�

dt̄̄ GR�t, t̄��R�t̄, t̄̄�G��t̄̄,t��

+ �
t�

t

dt̄�
−�

t�

dt̄̄ GR�t, t̄����t̄, t̄̄�GA�t̄̄,t�� . �18�

Note the structure of these equations which follows the
Langreth-Wilkins rules.17,18

For the reverse order of times, t� t�� t�, another two
relations result from Eq. �16�. One is the analog of Eq. �17�
for the advanced propagator GA. The other one, for G�, is
symmetric to Eq. �18�; we will refer to them as to Eqs. �17’�
and �18’� without writing them down explicitly.

The direct way from the Dyson equation �3� to Eq. �17�
starts from the “semigroup composition rule” �SGR� for the
free GF, G0

R�t , t��= iG0
R�t , t��G0

R�t� , t�� for t� t�� t�. Intro-
duced into the retarded component of the Dyson equation
�3�, it leads to

��t − t��GR�t,t�� − �
t�

t

dt̄�
t�

t̄

dt̄̄ G0
R�t, t̄�

��R�t̄, t̄̄���t̄̄ − t��GR�t̄̄,t��

= iG0
R�t,t��GR�t�,t� /

+�
t�

t

dt̄�
t�

t�

dt̄̄ G0
R�t, t̄��R�t̄, t̄̄�GR�t̄̄,t�� . �19�

Employing �1−G0
R�R�−1G0

R=GR, we arrive at Eq. �17�. Equa-
tions �17� and �18� are then derived in a similar fashion and
this completes the proof of Eq. �16�.

In Eq. �16�, the first term represents the NGF split at an
intermediate “splitting time” t� into two factors: propagation
in the past and in the future. This sharp factorization �“NE
SGR”� is blurred in time by the vertex correction �“NE
RSGR”�, reflecting coherence past-future—i.e., memory of
the system—except if retardations are negligible �free GF,
mean-field approximation.� Thus, Eqs. �17� and �17’� are a
renormalized SGR for nonequilibrium propagators; the time
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blurring is on the order of the quasiparticle formation time
�Q,22 if it exists. Equations �18� and �18’� for G� are similar,
only there are two vertex corrections now and two character-
istic times �Q for �R and a collision duration time �c related
to the time spread of ���t , t��.22

Now we are ready to continue with the link beween the
NE WI and some approximations, in particular with the gen-
eralized Kadanoff-Baym ansatz �Refs. 17–19�.

GGKBA
� �t,t�� = − GR�t,t��
�t�� + 
�t�GA�t,t�� . �20�

In the NGF theory of quantum transport equations,17–19 it
serves to build up the whole G��t , t�� from its time diagonal

�t��=−iG��t� , t��, the one-particle density matrix, by means
of the propagators. The GKBA is closely related to the NE
SGR: Eqs. �18� and �18’� go over to the renormalized coun-
terparts of the GKBA, known as reconstruction equations, in
the respective limits t�→ t�, t�→ t. While the latter are con-
sistent with the Ward identity, the bare GKBA itself clearly is
not.23 Yet the GKBA has been widely used with success in
the NE quantum transport practice. A partial explanation may
be as follows. Let t� t�� t�. Eq. �17�, GGKBA

� satisfies the
relation �schematically� GGKBA

� = iGRGGKBA
� +��GR�RGGKBA

�

for any t�.This is different from Eq. �18� indeed, as the “dy-
namical” vertex part ��GR��GA is missing. This term, how-
ever, is zero for t�� t�� t�+2�Q+�c and GGKBA

� then obeys
the complete equation �18�. In the long time asymptotics,
t− t���Q, �c, which is decisive for the use of quantum trans-
port equations,17–19 GGKBA

� is governed by this exact func-
tional relation everywhere, except in the presumably narrow
interval t�� t�� t�.

In conclusion, we have derived a Ward identity for Fermi
systems far from equilibrium. The general derivation is
based on only two assumptions: the global U�1� symmetry
�the Fermion number conservation� and the Keldysh initial
condition for the nonequilibrium process. Second, a renor-
malized multiplicative law for the NGF—NE RSGR—has
been derived and linked with the Ward identity on the com-
mon physical basis of reducing two-particle vertex functions
to single particle self-energies. These results are shown to
have an important bearing on the NE WI based consistency
checks, but mainly on the theory of quantum transport equa-
tions.

Two directions for further work can be singled out. On the
formal end, one goal is the Ward identity for general non-
equilibrium processes with a correlated initial condition. An-
other goal is an exact reduction of NE RSGR to a multipli-
cative form by absorbing the vertex corrections into the NE
quasiparticle propagators: 22 GR�i+
�G�→ iGQP

R G�, etc. As
concerns applications, the universal nature of the NE WI
hints at two areas: �i� the presently topical NE dynamical
mean-field theory for strongly correlated systems,24,25 and
�ii� nanostructures under strong and/or transient bias.26.
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